Binary Classification with a Pseudo Exponential Model and Its Application for Multi-Task Learning

نویسندگان

  • Takashi Takenouchi
  • Osamu Komori
  • Shinto Eguchi
چکیده

In this paper, we investigate the basic properties of binary classification with a pseudo model based on the Itakura–Saito distance and reveal that the Itakura–Saito distance is a unique appropriate measure for estimation with the pseudo model in the framework of general Bregman divergence. Furthermore, we propose a novel multi-task learning algorithm based on the pseudo model in the framework of the ensemble learning method. We focus on a specific setting of the multi-task learning for binary classification problems. The set of features is assumed to be common among all tasks, which are our targets of performance improvement. We consider a situation where the shared structures among the dataset are represented by divergence between underlying distributions associated with multiple tasks. We discuss statistical properties of the proposed method and investigate the validity of the proposed method with numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

A multi-task learning model for malware classification with useful file access pattern from API call sequence

Based on API call sequences, semantic-aware and machine learning (ML) based malware classifiers can be built for malware detection or classification. Previous works concentrate on crafting and extracting various features from malware binaries, disassembled binaries or API calls via static or dynamic analysis and resorting to ML to build classifiers. However, they tend to involve too much featur...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Exponential Family Sparse Coding with Application to Self-taught Learning

Sparse coding is an unsupervised learning algorithm for finding concise, slightly higher-level representations of inputs, and has been successfully applied to self-taught learning, where the goal is to use unlabeled data to help on a supervised learning task, even if the unlabeled data cannot be associated with the labels of the supervised task [Raina et al., 2007]. However, sparse coding uses ...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015